

SUMMARY

- French context and electricity planning framework
- **Scenarios building**
- From market to network studies
- **Conclusions**

2

FRENCH STAKEHOLDERS

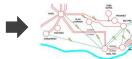
RTE work in transparency

	Regulator	Grid operator	Producers/ Suppliers	Public ministry of Energy
	CRE	RTE	EDF, ENGIE, Direct Energie, etc	DEGC
Missions	 Check the independence of the grid operator Check and approve network developments Check the fairness of electricity's market 	Ensure maintenance, development and operations of the network in total independence and transparence and at the minimum cost Ensure security of supply	 Ensure profitability in liberalized electricity markets 	 Enforce political decisions in term of national energy decisions
Power	 Can modify ten-year network development plan Can take coercive actions against stakeholders 		 Produce energy, build power plants and new services Supply final consumers at the best cost 	■ Law, decrees

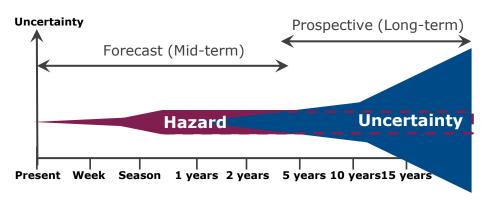
RTE'S WORKFLOW: MULTI STAGE STUDIES

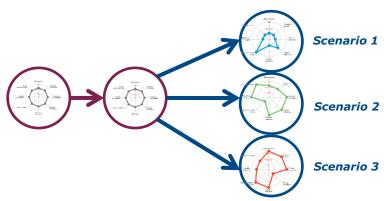
From market to network modeling

French ten-year National Generation Coherent and local Zonal studies network Adequacy Report assumptions corpus development plan · Build national coherent and distinct sets of assumptions · Break the national load · Identify network issues Test possible futures Identify network issues and generation to the thinness scale **Objectives** to the electrical zone electrical systems assumptions to the local Propose a development scale scale (below the region) plan Take into account other European countries · Assess shortfall risks



GENERATION SCENARIOS: HAZARDS VS UNCERTAINTIES


Two different unknowns


Hazards

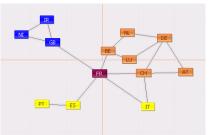
- Unplanned outages
- Load forecast errors
- Wind and solar production
- Hydraulic storage levels
- ..

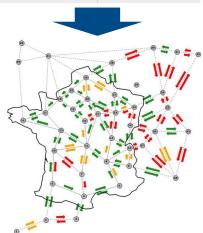
Uncertainties

- Economic growth
- Technologies
- Interconnexion developments
- New actors
- Commodities prices
- Political orientations
- Demography
- •

LONG-TERM SCENARIO BUILDING

Scenarios must framing the future


	Scenario		
	Generation	Load	
What	· 4 scenarios	4 scenarios Distinct by the level of consumption more than the structure	
Why	Investment decision time range of producers Lot of uncertainties (political, economic, regulations,) Possible technological impact Impossibility to forecast at this time range	Load level depending of uncertain economic growth Change in the use of electricity (electric cars,) etc Impossibility to forecast at this time range	
How	• Building of coherent scenarios framing the future • Need to be distinct to improve further sensitivity analyses C D		



ZONAL APPROACH

Addition of an equivalent grid to the market model

Splitting national assumptions by zone (hourly step)

Model an equivalent network (Kirchhoff laws) at the scale of the zones

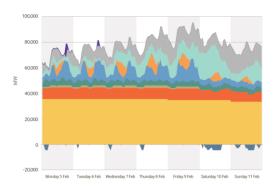
Identify zone with issues to optimize network studies (representative snapshot)

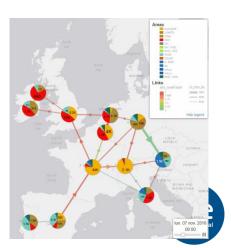
Each area is defined by assumptions on...

Its electrical demand and ancillary services (reserve) needs

Its generation fleet with its technical and economic characteristics

(most input data is yearly time series with a resolution of 1 hour)


PROBABILISTIC APPROACH


The best way to deal with hazards

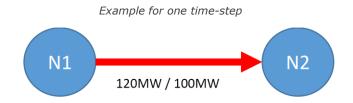
Key outputs:

- Flow on the interconnexion
- Starting plan on each unit connected to the French
- Identification of constrained areas

DC OPF SIMULATION

Accurate assessment of the congestions and their costs

For each constrained areas, detailed studies are conducted


They use a **DC Optimal Power Flow "OPF"** (i.e. Power flow only with active power), at an hourly step

These studies use a **full representation of the grid** and take in inputs :

- The previous Antares outputs
- The cost of generation per unit
- The cost of Co2 emission and the Co2 emission rate/unit

They allow to:

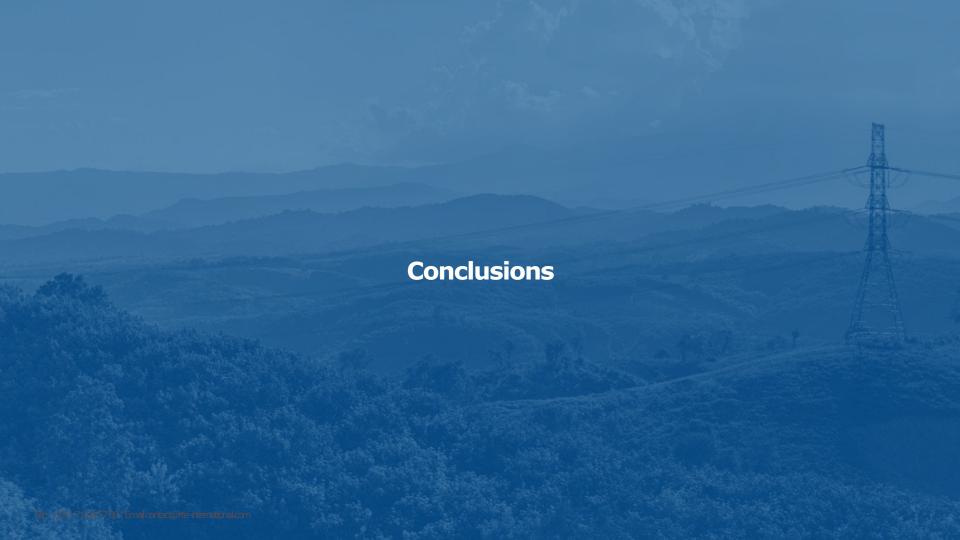
- Identify congestion on the grid
- Test different network topology: N, N-1
- Solve congestion at the best prices with redispatching
- Assess the price of congestion through redispatching

Prod. 120MW Down cost: 0€/MW Up cost: NA (PV gen.) CO2/MWh: 0t

CO2/1010111.00 CO2 cost: 25€ Prod. 60MW

Down cost: -40€/MW

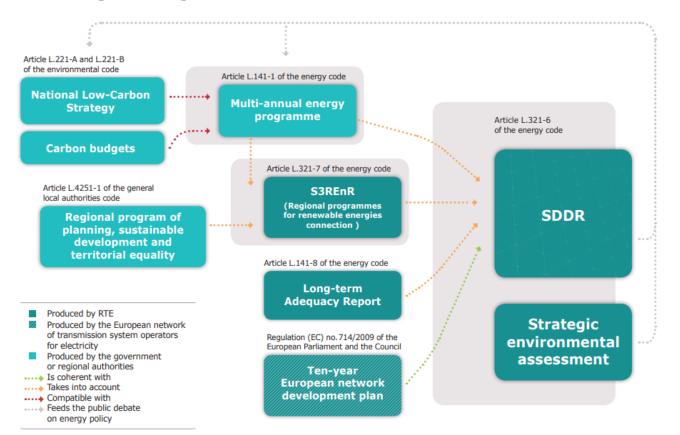
Up cost: +55€/MWh


CO2/MWh: 0,49t

CO2 cost: 25€

Redispatching cost = 1345€/hour

FRENCH TYNDP IN ONE GLANCE


4 key aspects

	Key aspects	How	
	Sensitivity to several scenario	Building several possible coherent futures Test the results to several scenarios to check stability	
oO	Technical justification	Network studies Identification of main factors (network congestion, lack of power,)	
•	Economic justification	Economic studies Build relevant indicators (CBA, Social Welfare, etc)	
	Transparency and validation	Public debates on national assumptions Internal validation process Regulator approves the ten-year network development plan Public diffusion of reports	

GENERAL WORKFLOW

